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Abstract 
 

Deformation of the wire used in the windings of an 
inertially confined (single use) solenoid used to produce a 
pulsed high magnetic field is potentially the limiting 
factor for the magnitude and duration of the magnetic 
field produced. The rising magnetic pressure at the wire 
surface can become large enough to cause the cross 
section of the wire to plastically deform on a time scale 
shorter than the overall solenoid disassembly time. This 
may result in short circuiting due to insulator breakage 
and/or physical contact of adjacent windings. An analytic 
approximation modeling the deformation dynamics is 
presented which takes into account both inertial and 
material yield strength effects. The model is validated by 
comparison to two dimensional magnetohydrodynamic 
simulations of the process by Numerex's MS Windows 
version of AFRL's MACH2. Cases ranging from those 
where yield strength has a negligible effect on the 
deformation to where yield strength is significant are 
considered. This paper expands on work presented at the 
previous IEEE IPPC[1]. 
 
 

I.  INTRODUCTION 
 
 Consider a long solenoid wound from round wire made 
of metal with a given yield strength and having a diameter 
small compared to the solenoid diameter. We wish to 
model the deformation magnitude of the wire cross 
section due to an internal magnetic pressure high enough 
to cause rapid disassembly (explosion). A detailed model 
of the elastic-plastic flow requires a two-dimensional 
magnetohydrodynamic simulation with material strength 
treatment. A simpler analytic model, however, is desirable 
to parameterize scaling relationships, permit more timely 
design guidance, and provide physical insight into the 
deformation process. For the latter, we represent the wire 
in planar geometry by a square one of the same cross 
sectional area that, by assumption, remains rectangular 

during deformation. The solenoid radius is assumed to be 
large enough to permit hoop stress effects to be neglected 
during the time of interest. To permit an analytic solution, 
the magnetic pressure is represented by a uniform 
pressure applied to one side of the square that rises 
instantaneously to a constant value P at time t = 0. A free 
standing wire and one bounded by a rigid wall opposite 
the pressurized side are considered. These are intended to 
represent a free standing solenoid and one reinforced by a 
surrounding tube, respectively. The dynamic width of the 
wire is calculated assuming conservation of global energy 
and momentum. 
 The relationship between P used in the model and the 
central solenoid magnetic field B1 must take into account 
the fact that the local magnetic field at the wire surface is 
higher than B1. To determine an effective P, we equate the 
initial pdV work performed per winding of an ideal 
solenoid by expanding its radius by a small amount dR to 
the work performed on our square wire by pressure P over 
the same displacement, 
 

 
 
Here, R0 is the initial solenoid radius, S is the wire 
spacing, r0 is the initial wire radius, A0 is the initial side 
length of a square wire of the same area, and  µ0 = 4π ×  
10-7 H-m-1. From this, 

 

 
 

In regard to the aforementioned detailed treatment, the 
analytic models are checked against the code 
MACH2[2][3] for a range of conditions to establish their 
suitability for providing general design criteria for similar 
geometries.  
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II.  DEFORMATION OF A 
RECTANGULAR WIRE  

DUE TO PRESSURE ON ONE SIDE 
 
 Referring to "top" and "bottom" as illustrated in Fig.1, 
we first calculate the deformation of a free rectangular 
wire (for generality) due to a uniform and constant 
pressure P on the top surface, assuming the wire remains 
rectangular.  We define our (x, y) coordinates to be in the 
accelerated reference frame of the wire, with the origin at 
the center of mass. The dynamic wire width is A (A0 
initially), the height is B (B0 initially), and the center of 
mass speed is V. Uniaxial yield strength Y and density ρ 
are assumed constant. We further assume the simplest 
possible expression for the material velocity field v in the 
center of mass, 
 

 
 
From incompressibility, 
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Figure 1. Geometry for analytic model of free standing 
solenoid wire deformation. 
 
 
   The Levy-Mises equation for rigid plastic flow[4] is 
assumed, 

 
where S is the deviatoric stress tensor (S ⋅ I  =  0), and D 
is the deviatoric strain rate tensor, 
 

 
 

Incompressibility implies ∇ ⋅v = 0. Substituting Eq. 3 into 
Eq. 6 then gives, for the nonzero D elements, 
 

 

Since S is proportional D in this model, our neglect of 
hoop stress is equivalent to neglecting Dzz due to solenoid 
expansion. 
 The time derivatives of the external work, plastic 
work[4], and kinetic energy per unit length of wire are, 
respectively, 
 

 
 
where the integrals are over the wire cross section. 
Conservation of energy and momentum imply, 
 

  
 

Assuming constant P, we derive[1], 
 

  
where 

 
 
The integrand may be approximated for small strains (ε < 
0.1) by the truncated Laurent expansion in s1/2 giving, 
  

 
 

We see from the denominator of the root that no flow 
occurs if Y  ≥  31/2P/4.  For an initially square wire, 
  

 
     
 A similar analysis is performed for a wire supported 
from below (lower boundary does not move) resulting in, 
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We see from the denominator of the root that the yield 
strength must be twice as high in the supported case (Y  ≥  
31/2P/2) vs. the unsupported one to avoid flow. β = 3/5 for 
an initially square wire. 
 
   

III.  COMPARISON WITH MACH2  
 
 MACH2 simulations run in planar geometry 
representing a solenoid wound from wire of radius r0 = 
3.18 × 10-3 m and having a gap between turns equal to 
10% of the wire diameter are compared to our analytic 
free and bounded wire models. We consider wires made 
of half-hard Cu and 90% cold worked Glidcop� Al2O3 
dispersion strengthen Cu alloy AL-15[5][6] exposed to a 
range of magnetic field magnitudes. AL-15 has a density, 
compressive equation of state, conductivity, and elastic 
modulus similar to Cu, but a higher yield strength. The 
SESAME Cu equation of state table[7] and Desjarlais' 
modified[8] Lee-More Cu electrical conductivity 
model[9] are used for both materials. The Steinberg-
Cochran-Guinan strain rate independent half-hard Cu 
model[10][11] is used for Cu's elastic-plastic behavior. 
The same S-C-G shear modulus is used for AL-15 but, 
lacking high strain rate data, AL-15's uniaxial yield 
strength is set to its published 90% cold worked value of 
3.40 × 108 Pa.  Periodic boundary conditions are invoked, 
corresponding to the wire being one of an infinite array of 
wires with center-to-center spacing of 7 × 10-3 m. The 
upper boundary condition is defined at y = 0.10 m to have 
a magnetic field of B = B1x, keeping the same "up-down" 
convention as the analytic model. The lower boundary 
condition is at y = −0.10 cm with B = 0. The simulations 
are for free wires only. 
  Figure 2 illustrates the wire outlines for three cases at 
the time the wires expand by 10% and, therefore, short to 
the neighboring turns. Figure 3 compares the time t 
required for the wire to spread by 10% in MACH2 
simulations vs. the free and bound analytic models, as 
determined by Eq. 13 and  Eq. 14, respectively. Here, 
using Eq. 2 and Eq. 11, parameters for the analytic models 
common to all cases considered are, 
 

 
 

The equivalent pressure P is then determined from Eq. 2. 
Using the high strain rate initial yield strength from half-
hard Cu's S-C-G model and the published yield strength 
of AL-15, we have Y = 1.23 × 108 Pa and Y = 3.4 × 108 
Pa, respectively, for the analytic models. 
 We see from Fig. 3 that all three models (two analytic, 
one numeric) are in reasonable agreement for B1 ≥ 50 T, 
and the difference between Cu and AL-15 is small. One 
may infer from the small displacement of the bottom of 
the wire for Cu at 50 T illustrated in Fig. 3 that a 
bounding wall does not have time to affect the wire width 

0.7 cm

B

initial Cu, 50 T, 4.7 µs

AL-15, 35 T, 10.1 µs

Cu, 23 T, 17.6 µs

 
Figure 2. MACH2 results at 10% spread for two cases of 
solenoid wire deformation. 
 
 
 

 
 
Figure 3. The time it takes a 0.318 cm radius wire in a 
solenoid with at 10% interwinding gap to spread 10% vs. 
internal magnetic field. AL-15 and Cu wires using the 
three theoretical models presented are compared. The 
vertical lines represent the analytic critical values for B1 
where no deformation occurs. 
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by the time the wire spreads 10% in the inertially 
confined (low strength) limit. Both analytic models reflect 
this accurately; they differ by only about 10% for P >> Y 
for slightly strained square wires. It comes as a surprise 
for lower magnetic fields, however, that MACH2 agrees 
much better with the analytic bounded wire model than 
with the free wire model that was originally intended to 
represent it. It appears that when strength does play a 
significant role in impeding expansion, the bound wire 
model provides the best correlation. Figure 2 suggests an 
explanation. The wire's shape at 10% expansion varies 
little with the relative values of Y and B1.  Furthermore, 
the deformation occurs primarily in the top half before the 
bottom is substantially displaced. Placing a lower 
boundary on the analytic model apparently offsets the 
error introduced by the unrealistically homogeneous strain 
assumed. 
  Such deformation localization decreases, and the 
discrepancy between the bound model and MACH2 
increases, as the magnetic field is lowered toward the 
critical value where no deformation occurs. The Cu wire 
exposed to 23 T, for example, is more elliptical than the 
other cases at 10% expansion, as evidenced by the greater 
bulge in the lower half of the wire shown in Fig. 3. This 
implies a more homogeneous strain profile. With the 
plastic work, therefore, more uniformly distributed, the 
wire more efficiently resists deformation than in cases 
where the magnetic field is well above its critical value. 
 
 

IV.   CONCLUSIONS 
 
 Real solenoid currents can rarely be approximated as 
rising abruptly to a constant value due to inductance. The 
analytic free and bound wire models may be generalized 
to account for a time dependent current and, therefore, P 
by numerical integration of Eqs. 9. Since the bound wire 
model provides a good correlation to MACH2 simulations 
for a broad range of constant pressures, it is reasonable to 
conclude that it takes into account inertial and material 
strength effects with reasonable accuracy. The correlation, 
therefore, is likely to be good for time dependent 
pressures too. This should be especially true for cases 
where the peak effective P is significantly higher than the 
bound model's critical value of 2Y/31/2. 
  The good correlation between the bound wire model 
and MACH2 depends on the fact that for a round wire, 
where magnetic pressure gradients are directed toward the 
center of the wire, the deformation is distributed broadly 
over a significant portion of the cross section. If an actual 
rectangular wire is use, however, this is unlikely to be the 
case. A similar magnetohydrodynamic simulation with 
material strength treatment performed for a single turn 
solenoid with its winding having a rectangular cross 
section results in the inner surface of the solenoid 
deforming locally into a mushroom shaped profile[12], 
much as in a peened rivet, when it is used to create a high 
magnetic field. It is with some irony, then, that the 

rectangular models presented can be expected to be 
inaccurate for actual wires of rectangular cross section. 
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